

350 VOLUME 20(3), 2021

Date of publication SEP-30, 2021, date of current version MAY-12, 2021.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209

Online ISSN 2312-5381

DOI 10.47839/ijc.20.3.2280

Hybrid Maintainability Prediction using

Soft Computing Techniques

MANJU DUHAN, PRADEEP KUMAR BHATIA
Guru Jambheshwar University of Science &Technology, Hisar

(e-mail: duhan.manju@gmail.com, pkbhatia.gju@gmail.com)

Corresponding author: Manju Duhan (e-mail: duhan.manju@gmail.com).

The authors are grateful for support from the Guru Jambheshwar University of Science and Technology, for providing a lab facility to

run various tools used in the current study.

 ABSTRACT Effective software maintenance is a crucial factor to measure that can be achieved with the help of

software metrics. In this paper, authors derived a new approach for measuring the maintainability of software

based on hybrid metrics that takes advantages of both i.e. static metrics and dynamic metrics in an object-oriented

environment whereas, dynamic metrics capture the run time features of object-oriented languages i.e. run time

polymorphism, dynamic binding etc. which is not covered by static metrics. To achieve this, the authors proposed

a model based on static and hybrid metrics to measure maintainability factor by using soft computing techniques

and it is found that the proposed neuro-fuzzy model was trained well and predict adequate results with MAE 0.003

and RMSE 0.009 based on hybrid metrics. Additionally, the proposed model was validated on two test datasets

and it is concluded that the proposed model performed well, based on hybrid metrics.

 KEYWORDS Neuro-fuzzy; Neural Network; Dynamic; Maintainability.

I. INTRODUCTION

OFTWARE maintenance is the most critical activity in

the software development life cycle. It can consume

around 70% of the cost of the entire life cycle [1]. Thus,

the right maintainability prediction can reduce the cost of the

software product. Therefore, evaluating maintainability in

the early phases of the software development life cycle is

essential and beneficial in terms of cost, productivity, time

and efforts required to build different projects. Many Object-

Oriented metrics exist to compute the maintainability factor

of a software system in an Object-Oriented environment.

Static metrics provide early detection of faults and cost

benefits, whereas dynamic metrics show the actual software

behaviour by capturing features like run time polymorphism

and dynamic binding. Besides, Dynamic metrics evaluation

is a time-consuming task. Therefore, the hybrid approach

saves time and effort and covers all the features that affect

software maintainability. Therefore, in this paper, authors

mainly have chosen six factors: complexity, coupling,

cohesion, inheritance, the response between classes and size,

to evaluate maintainability as a function of change using

static and hybrid metrics (a combination of static and

dynamic metrics). In the case of static metrics, we have

chosen six metrics, i.e. WMC, DIT, LCOM, RFC, CBO and

CLOC whereas, in the case of hybrid metrics, we took three

metrics from the static metrics set, i.e. RFC, CBO and DIT

and three dynamic metrics, i.e. DLCOM, DWMC and

DLOC, as described in Table 1. We have chosen these

metrics based on the correlation of these metrics with

external quality factor, i.e. maintainability.

Further, there is no direct relationship between

maintainability attributes. Therefore, the neural network

(NN) [2] approach provides adaptive learning capabilities to

predict software maintainability, whereas fuzzy logic can

generalize rules. To take advantage of both, we have

proposed a neuro-fuzzy (NF) approach [3] to determine a

class's maintainability effectively. Further, the authors also

compared the proposed NN and NF model with four existing

machine learning algorithms as described below.

S

Manju Duhan et al. / International Journal of Computing, 20(3) 2021, 350-356

VOLUME 20(3), 2021 351

Table 1. Static and dynamic metrics used in the current

study

Static

Metrics
Description

WMC “Sum of the complexity of the methods of a class” [4]
DIT “The max. length from the node to the root of the tree”

[4]
LCOM96a “Number of attributes invoked by all the methods in a

class at compile time” [5]
RFC “Numbers of methods invoked from a class” [4]
CBO “Number of other classes to which it is coupled” [4]
CLOC “The number of all nonempty, non-commented lines

of the body of the class”
Dynamic

Metrics
Description

DLCOM “It is defined as the combination of RLCOM (Runtime

Lack of cohesion of methods), RAAR (Runtime

Attribute Access Rate) and RMMC(Runtime method

to method call)” [6]

DWMC “Number of times methods of class executed at

runtime”

DLOC “Number of times lines of a class executed at runtime”

A. RANDOM FOREST

Random Forest is a supervised learning algorithm used in

classification and regression but most commonly used in

classification. This algorithm builds the decision tree using

each data sample and takes the prediction of each decision

tree. Then voting is performed on every predicted result and

selects that prediction which gets the maximum vote and

gives the best result.

B. LINEAR REGRESSION

The Linear Regression model mainly based on the concept

of best fit by finding the relationship between attributes. This

algorithm also comes under the category of supervised

learning classification algorithms.

C. SMOreg

Sequential Minimal Optimization Regression algorithm

performed best for solving quadratic programming problems

to train support vector machines. This algorithm also comes

under the category of supervised learning classification

algorithms that takes advantage of the regression algorithm.

D. MULTILAYER PERCEPTRON

MLP is a supervised learning classification algorithms that

use a back-propagation algorithm for training of attributes

feed as input to the artificial neural network. It uses multiple

layers and many folds instead of a single layer perceptron

that enhance its accuracy.

The rest of the paper divides into mainly four sections.

Section 2, presents a literature review and research

methodology followed in this paper. Section 3, presents the

proposed formula and proposed model to measure

maintainability using soft computing techniques. Section 4,

explains the experimental study done on HoDoKu software

and comparison of various soft computing techniques.

Section 5, describes the conclusion and future directions

referenced to the current study.

II. RESEARCH WORK

A. RESEARCH BACKGROUND

Software design metrics evaluate the software

maintainability in the early phases of software development

life cycle (SDLC) that lack in handling run time features of

object-oriented languages like dynamic binding and run time

polymorphism. Many empirical studies exist in the literature

to compute software maintainability using static design

metrics [7-16]. However, significantly less emphasis was

done to map dynamic metrics to the software’s

maintainability factor. AI-Jamimi et al., 2012 [16] proposed

a fuzzy logic model based on static metrics and applied it on

two object-oriented datasets. Alijamaan et al., 2013 [17]

proposed an ensemble model using four other machine

learning algorithms, i.e. MLP, RBF, SVM and M5P, to find

the maintainability of object-oriented software. They applied

these models on different datasets, which also took static

metrics, i.e. CK, Li and Henry and size, as its base. Baqais et

al., 2013 [18] proposed neural network and genetic

algorithms implementation to find maintainability

estimation by applying it on Andriod, an open-source

software, using the same set of static metrics as input to their

models used by previous authors. Malhotra et al., 2014 [19]

proposed a Group method of data handling (GMDH) model

and compared this model with the other two models, i.e.

FF3LBPN and GRNN and concluded that the proposed

GMDH model was best among all with the least errors. They

also used the same set of metrics as the input used by

previous author’s, i.e. static metrics. Sharma et al., 2015 [20]

compared the static and dynamic metrics approach to find

maintainability of software by using four machine learning

algorithms, i.e. MLP, Linear Regression, SMOreg Gaussian

process. The authors concluded that the Linear regression

model performed best among all dynamic metrics to find

software’s maintainability. Kumar et al., 2017 [3] proposed

a neuro-fuzzy model to evaluate software maintainability by

applying it on two commercial software, i.e. UIMS and

QUES, using static metrics. Authors used PCA and RSA

theory for feature reduction and concluded that these

techniques found the maintainability of software with higher

accuracy. Hence, from the existing literature survey, it is

observed that all the studies made by various researchers

took static metrics as input and very little work done on

dynamic metrics. Therefore, in this paper, the authors choose

hybrid metrics that are a combination of static and dynamic

metrics to predict software maintainability that consumes

less time and provides higher accuracy. Further, we observed

that machine learning algorithms, i.e. Random Forest and

hybrid approach, i.e. neuro-fuzzy, were not explored much.

Therefore, the authors proposed a neural network and neuro-

fuzzy model based on static and hybrid metrics and

compared them with four other existing machine learning

 Manju Duhan et al. / International Journal of Computing, 20(3) 2021, 350-356

352 VOLUME 20(3), 2021

models, i.e. MLP, Random Forest, SMOreg and Linear

regression [20].

B. RESEARCH METHODOLOGY

The methodology implemented in the current study is shown

in Figure 1. The authors worked on two versions of

HoDoKu, open-source software i.e. HoDoKu 2.0.1(2010)

and HoDoKu 2.2(2012) that were compared on the same

source code. Based on that, 63 classes were evaluated. Static

metrics were collected by using the CodeMR tool [21], an

Eclipse plugin and dynamic metrics were collected by using

the AspectJ [22] tool, an implementation of aspect-oriented

programming [23] on the Eclipse platform [24]. Aspects

were created and run with Java classes using AspectJ to

extract dynamic metrics without affecting the functioning of

original Java classes which is the best feature of aspect-

oriented programming. The authors also applied four

existing machine learning algorithms (MLA) by using

WEKA 3.8 tool [25] on static and hybrid metrics. Results

were analysed based on Mean Absolute Error (MAE) and

Root Mean Square Error (RMSE) [20] values obtained by

comparing the various machine learning algorithms [26, 27].

Figure 1. Research Methodology followed in the current

study

III. PROPOSED WORK

A. PROPOSED FORMULA

A formula is proposed based on metrics described in section

1. Static and Hybrid metrics were considered as independent

variables whereas maintainability i.e. a function of change

was considered as a dependent variable. The Change was

counted by comparing two consecutive versions of software

whereas addition and deletion of code were counted as one

changFe while updating of code was counted as two changes

[3]. The proposed formula is defined in equation (1) and (2)

whereas in equation (2) combination of static and dynamic

metrics were used i.e. three metrics DIT, RFC and CBO were

static metrics and DWMC, DLCOM and DLOC were

dynamic metrics.

Maintainability for static metrics=

ƒ(WMC,DIT,RFC,CBO, LCOM, LOC). (1)

Maintainability for Hybrid metrics=

ƒ(DWMC,DIT,RFC,CBO,DLCOM,DLOC). (2)

B. PROPOSED NEURAL NETWORK MODEL

The proposed neural network [2] was trained with six inputs

and one output i.e. software maintainability. Trainbr was

used as a training function, the number of neurons at the

hidden layer was set to 30 and transit function was used as a

transfer function as described in Table 2.

The proposed ANN as shown in Figure 2 was trained on

raw data sets by the standard error back-propagation

algorithm at a learning rate of 0.006, having the mean

squared error as the training stopping criterion. The network

divides the 63 samples into three parts i.e. 45 samples (70%)

for training, 9 samples (15%) for testing and 9 samples

(15%) for validating the neural network.

Table 2. Proposed neural network Description

Input units 6

Output units 1

No. of neurons at hidden layer 30

Algorithm Back propagation

Training function Trainbr

Network ratio 3:1:1

Figure 2. Proposed Neural Network Model

C. PROPOSED NEURO-FUZZY MODEL

Neuro-fuzzy is a hybrid system [3] that takes the benefit of a

fuzzy logic approach that provides flexibility to a system

rather than crisp logic and a neural network that can learn by

itself. Therefore, we can say that the neuro-fuzzy approach

is a mixture of implicit and explicit knowledge. In this paper,

the neuro-fuzzy model was applied with the help of the

MATLAB tool using the ANFIS editor. Firstly, raw data was

Manju Duhan et al. / International Journal of Computing, 20(3) 2021, 350-356

VOLUME 20(3), 2021 353

loaded into the ANFIS editor by using the load data option

and set the type of the data as training data in the load data

part of the ANFIS editor. After successful loading of data, a

message appeared on the ANFIS editor screen that train data

loaded. In this paper, 63 Java classes were loaded

successfully in the ANFIS editor for training having 6

numbers of inputs and one output as shown in Figure 3.

Figure 3. Loaded data in the neuro-fuzzy model

After the successful loading of data, we can see the

structure of the proposed neuro-fuzzy model having 6 inputs

and one output i.e. maintainability. After that, the authors

generated a Sugeno fuzzy inference system having three

membership function (gaussmf) i.e. low, medium and high

using grid partitioning method and then train the generated

FIS using a hybrid optimization method by setting the

number of epochs to 60. Further, trained ANFIS was tested

on 2 validation datasets by setting the load data type to

testing and again authors generated the FIS on testing data.

The detailed description of the proposed neuro-fuzzy model

is shown in Table 3.

Table 3. Proposed Neuro-Fuzzy Model Description

Input units 6

Output units 1

No of train data pairs 63

No. of fuzzy rules generated 749

FIS model Sugeno

FIS training optimization method Hybrid

FIS input membership function Gaussmf (Low,

Medium, High)

FIS output membership function Linear

FIS generation method Grid

Partitioning

No. of epochs 60

D. MACHINE LEARNING ALGORITHMS USED IN
CURRENT STUDY

Authors have also used four machine learning algorithms i.e.

Linear Regression, Multilayer Perceptron, Random Forest

and SMOreg in the current study to find the maintainability

factor of software. The authors applied these algorithms by

using WEKA 3.8 tool [25]. Firstly, static and hybrid metrics

raw data were normalized using the min-max normalization

[12] technique to reduce the complexity of attributes taken

as input to machine learning models and processing speed

got faster to measure the desired output. After that, the

classification of processed data was done by setting the

cross-validation folds value to 30 as shown in Figure 4.

Figure 4. Loaded data of static metrics in WEKA 3.8 tool

IV. ANALYSIS RESULTS

An experimental study was conducted on HoDoKu, open-

source software by comparing 2 consecutive versions of it.

Static and hybrid metrics were extracted from classes having

the same source code in both versions. Static metrics were

extracted using the CodeMR tool and dynamic metrics were

extracted using AspectJ, an implementation of aspect-

oriented programming on the eclipse platform. Aspect-

oriented programming is used as the process of building a

tracing or profiling framework using the aspect-oriented

approach that is relatively simpler than any other approach.

Further, statistics were applied to calculated values of

metrics using the MATLAB tool [2]. Functions named

min(), max(), mean() and std() used in MATLAB to find

a minimum, maximum, mean and standard deviation of

measured metrics values, respectively. The statistical result

on metrics values are shown in Table 4 and Table 5,

respectively.

 Manju Duhan et al. / International Journal of Computing, 20(3) 2021, 350-356

354 VOLUME 20(3), 2021

Table 4. Statistical data of Static Metrics

Metric

Name

MIN MAX MEAN STD.
DEV.

WMC 0 749 64 124.29

DIT 1 6 3.41 2.15

RFC 0 444 72.65 80.04

CBO 0 21 3.47 4.26

LCOM(96a) 0 1 0.71 0.31

CLOC 3 2336 290.57 394.25

CHANGE 0 607 44.60 111.06

Table 5. Statistical data of Hybrid Metrics

Metric

Name

MIN MAX MEAN STD.

DEV.

DWMC 0 450 63.45 98.34

DIT 1 6 3.36 2.18

RFC 0 444 76.07 91.56

CBO 0 21 3.65 4.79

DLCOM 0 0.99 0.65 0.31

DLOC 2 1040 225.63 253.39

CHANGE 0 607 44.60 111.06

From these descriptive statistics some observations

were recorded as mentioned below:
• WMC and DWMC showed a great difference in their

values that indicates all the methods of a class were

not executed at run time. Hence, the complexity of

methods at a run time decreases when compared with

the compile-time complexity of methods that affects

the maintainability of software and makes the

DWMC an essential metric to predict the

maintainability of software.

• LCOM and DLCOM values were nearly the same in

most of the cases and showed high variation in some

cases that shows cohesion of classes is not predicted

well by static metrics. Therefore, DLCOM has its

importance to find the maintainability of software.

• Size of code is decreased by almost half at run time

that is computed well by DLOC metric as compared

to size computed at compile time by CLOC metric.

A. COMPARISON RESULTS

Static and Dynamic Metrics were analysed on six soft

computing techniques including the proposed neural

network and neuro-fuzzy model and results indicate that the

proposed neuro-fuzzy model performed well and better

predicts the maintainability of software in the case of hybrid

metrics as shown in Table 6. From Table 6, it is observed

that hybrid metrics provides better results irrespective of any

machine learning prediction model as compared to static

metrics.

Table 6. Comparison of various classification algorithms

From Table 6, the authors observed that the highest value

of MAE is 0.31 for static metrics and 0.30 for hybrid metrics

using Linear Regression and SMOreg models that indicate

that these models have the highest difference between

predicted and actual value. The lowest value of MAE is 0.01

for static metrics and 0.003 for hybrid metrics using the

neuro-fuzzy model that indicates that the proposed neuro-

fuzzy model was trained well and has minimized the

differences between predicted and actual values more in the

case of hybrid metrics. In contrast, time taken to build the

neuro-fuzzy model is highest as compared to other

classification models and least in the case of MLP model that

shows there is a trade-off between time and accuracy factor

of various models.

Comparison of MAE and RMSE values for static and

hybrid metrics is shown in Figure 5 and Figure 6 respectively

that clearly shows that hybrid metrics are better predictors of

maintainability as compared to static metrics irrespective of

any classification algorithm.

Figure 5. Comparison of MAE values of various

classification algorithms.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

 Static metrics Hybrid metrics

Classification

Models

MAE RMSE Build

Time

MAE RMSE Build

Time

Linear

Regression
0.31 0.37 0.12 0.30 0.38 0.11

Multilayer

Perceptron

0.30 0.45 0.04 0.27 0.33 0.04

SMOreg 0.31 0.39 0.34 0.30 0.38 0.33

Random Forest 0.22 0.30 0.16 0.20 0.28 0.12

Proposed

Neural

Network Model

0.27 0.33 0.11 0.19 0.27 0.10

Proposed

Neuro-Fuzzy

Model

0.01 0.05 0.45 0.003 0.009 0.44

Manju Duhan et al. / International Journal of Computing, 20(3) 2021, 350-356

VOLUME 20(3), 2021 355

Figure 6. Comparison of RMSE values of various

classification algorithms

B. VALIDATION OF PROPOSED MODEL

The six machine learning models were validated on 2

datasets and the result indicates that the neuro-fuzzy model

was trained well that gave MAE 0.01 for test data set 2 in

case of static metrics as shown in Table 7 and 0.001 for test

data set 1 in case of hybrid metrics as shown in Table 8 that

indicates hybrid metrics better predicts maintainability of

software and gives higher accuracy than static metrics.

Table 7. Validation of various classification algorithms

based on Static Metrics

 Static metrics

Validation Test 1 Validation Test 2

Classification

Models

MAE RMSE MAE RMSE

Linear Regression 0.22 0.28 0.33 0.39

Multilayer

Perceptron

0.23 0.31 0.25 0.34

SMOreg 0.24 0.32 0.29 0.438

Random Forest 0.19 0.27 0.15 0.23

Proposed Neural

Network Model

0.27 0.31 0.30 0.40

Proposed Neuro-

Fuzzy Model

0.03 0.09 0.01 0.03

Table 8. Validation of various classification algorithms

based on Hybrid metrics

 Hybrid metrics

Validation Test 1 Validation Test 2

Classification Models MAE RMSE MAE RMS

E

Linear Regression 0.21 0.27 0.32 0.39

Multilayer Perceptron 0.19 0.30 0.13 0.16

SMOreg 0.20 0.28 0.28 0.40

Random Forest 0.07 0.11 0.09 0.13

Proposed Neural

Network Model

0.13 0.20 0.20 0.31

Proposed Neuro-fuzzy
Model

0.001 0.003 0.004 0.007

The authors compared the MAE values of dataset 1 and

dataset 2 as shown in Figure 7 and 8, respectively based on

static and hybrid metrics. It is found that the value of MAE

was lower in the case of hybrid metrics irrespective of any

machine learning algorithm and gave the best results in the

case of hybrid approach i.e. neuro-fuzzy.

Figure 7. Comparison of MAE values of Classification

models on data set 1

Figure 8. Comparison of MAE values of Classification

models on data set 2

V. CONCLUSIONS

The main purpose of the current study was to analyze the

usefulness of hybrid metrics for maintainability estimation

in an object-oriented environment that takes the advantages

of both i.e. static metrics and dynamic metrics that takes less

time and effort to compute maintainability of software with

higher accuracy. Comparison of various soft computing

techniques was done with the proposed neural network and

neuro-fuzzy approach based on static and hybrid metrics by

collecting metrics from HoDoKu, open-source software. The

proposed model has taken static and hybrid metrics as input

and maintainability as output i.e. function of change from

two consecutive versions of HoDoKu on the same source

code. Based on that, 63 Java classes were compared based

on mean absolute error (MAE) and root mean square error

(RMSE) values and it is found that hybrid metrics performed

utterly well for all the machine learning algorithms as

compared to static metrics to estimate the software

maintainability. Further, it is concluded that the proposed

0
0,05

0,1
0,15

0,2
0,25

0,3
0,35

0,4
0,45

0

0,05

0,1

0,15

0,2

0,25

0,3

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

 Manju Duhan et al. / International Journal of Computing, 20(3) 2021, 350-356

356 VOLUME 20(3), 2021

neuro-fuzzy model was trained well and gave satisfactory

results in the case of hybrid metrics with 0.001 mean

absolute error (MAE) on validation test data set 1. Hence,

this study would help the software industry to predict the

maintainability of software in advance with less time and

higher accuracy with the help of hybrid metrics. In future,

the model will be more sophisticated by taking a large set of

metrics on large projects in Object Oriented environment.

References
[1] R. S. Pressman, Software Engineering – A Practitioner's Approach,

7th ed., McGraw Hill, 2005.

[2] MATLAB Neural Network Tool Box 2016 Product Help.
[3] L. Kumar, S.K. Rath, “Software maintainability prediction using

hybrid neural network and fuzzy logic approach with parallel

computing concept,” International Journal of System Assurance
Engineering and Management, Springer, vol. 8, pp. 1487–1502, 2017.

https://doi.org/10.1007/s13198-017-0618-4.

[4] S. R. Chidamber, C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on Software Engineering, vol.20, issue 6,

pp. 476-493, 1994. https://doi.org/10.1109/32.295895.

[5] tusharma.in/technical/revisiting-lcom/
[6] Manju, P. K. Bhatia, “Measurement of dynamic cohesion using aspect

oriented approach,” International Journal of Research and Analytical

Reviews (IJRAR), vol. 6, issue 2, pp. 438-432, 2019.
[7] W. Li, S. Henry, “Maintenance metrics for the object-oriented

paradigm,” Proceedings of the First IEEE International Software

Metrics Symposium, 1993, pp. 52–60.
[8] P. Oman, J. Hagemeister, “Construction and testing of polynomials

predicting software maintainability,” Journal of Systems and

Software, Elsevier, vol. 24, issue 3, pp. 251–266, 1994.
https://doi.org/10.1016/0164-1212(94)90067-1.

[9] S. L. Schneberger, “Distributed computing environments: effects on

software maintenance difficulty,” Journal of Systems and Software,
Elsevier, vol. 37, issue 2, pp. 101–116, 1997.

https://doi.org/10.1016/S0164-1212(96)00107-0.

[10] R. Kohavi, “Relation between software metrics and maintainability,”
Proceedings of the FESMA99 International Conference, Federation

of European Software Measurement Associations, Amsterdam, The
Netherlands, vol. 1, pp. 465–476, 1999.

[11] M. Dagpinar, J.H. Jahnke, “Predicting maintainability with object

oriented metrics – An empirical comparison,” Proceedings of the 20th
Working Conference on Reverse Engineering (WCRE), 2003, pp. 155–

164.

[12] K. K. Aggarwal, Y. Singh, A. Kaur, R. Malhotra, “Application of
artificial neural network for predicting maintainability using object-

oriented metrics,” Proceedings of the World Academy of Science,

Engineering and Technology, vol. 15, pp. 140–144, 2006.
[13] Y. Zhou, H. Leung, “Predicting object-oriented software

maintainability using multivariate adaptive regression spline,” Journal

of Systems and Software, Elsevier, vol. 80, issue 8, pp. 1349–1361,
2007. https://doi.org/10.1016/j.jss.2006.10.049.

[14] M. O. Elish, K. O. Elish, “Application of TreeNet in predicting object-

oriented software maintainability: a comparative study,” Proceedings
of the 13th European Conference on Software Maintenance and

Reengineering, CSMR’09, 2009, pp. 69–78.

https://doi.org/10.1109/CSMR.2009.57.
[15] C. Jin, J.-A. Liu, “Applications of support vector maсhine and

unsupervised learning for predicting maintainability using object

oriented metrics,” Proceedings of the IEEE Second International

Conference on Multimedia and Information Technology, Kaifeng,

2010, pp. 24-27. https://doi.org/10.1109/MMIT.2010.10.

[16] H. Al-Jamimi, M. Ahmed, “Prediction of software maintainability
using fuzzy logic,” Proceedings of the 3rd International Conference

on Software Engineering and Service Science (ICSESS), 2012, pp.

702–705. https://doi.org/10.1109/ICSESS.2012.6269563.
[17] H. Aljamaan, M. O. Elish, I. Ahmad, “An ensemble of computational

intelligence models for software maintenance effort prediction,”

Proceedings of the Advances in Computational Intelligence, 2013, pp.
592–603. https://doi.org/10.1007/978-3-642-38679-4_60.

[18] A. A. B. Baqais, M. Alshayeb, Z. A. Baig, “Hybrid intelligent model

for software maintenance prediction,” Proceedings of the World
Congress on Engineering, 2013, vol. 1, pp. 358-362.

[19] R. Malhotra, A. Chug, “Application of group method of data handling

model for software maintainability prediction using object oriented
systems,” Int. J. Syst. Assur. Eng. Manag., Springer, vol. 5, issue 2,

pp. 165–173, 2014. https://doi.org/10.1007/s13198-014-0227-4.

[20] H. Sharma, A. Chug, “Dynamic metrics are superior than static metrics
in maintainability prediction: An empirical case study,” Proceedings

of the 4th IEEE International Conference on Reliability, Infocom

Technologies and Optimization (ICRITO), pp. 1-6, 2015.
https://doi.org/10.1109/ICRITO.2015.7359354.

[21] CodeMR guide (2020), https://www.codemr.co.uk/docs/codemr-

intellij-userguide.pdf
[22] AspectJ, 2020, http://www.eclipse.org/aspectj

[23] AspectJ tutorial, 2020. https://o7planning. org/en/10257/Java-aspect-

oriented-programming-tutorial-with-aspectj
[24] Eclipse guide, 2020.

https://www.eclipse.org/aspectj/doc/next/progguide/printable.html

[25] S. S. Aksenova, “Machine Learning with WEKA”, WEKA Explorer
Tutorial, 2004.

[26] J. Han, M. Kamber, Data Mining Concepts and Techniques, 2nd ed.,

Elsevier, 2006.

[27] J. Ulrich, Supervised Machine Learning for Email Thread

Summarization, Master’s Thesis, University of British Columbia,

Vancouver, Austin, 2006.

MANJU DUHAN is pursuing a PhD
degree at Guru Jambheshwar University
of Science and Technology, Hisar, India.
Her research interests are Neural
networks, Machine learning, Neuro-
fuzzy, Software Quality Metrics in Object
Oriented environment.

PRADEEP KUMAR BHATIA, Doctor of
Sciences, a Professor, Department of
Computer Science and Engineering,
Guru Jambheshwar University of Science
and Technology, Hisar, India. His
research areas are Software
Engineering, Computer graphics, Fuzzy
and Soft Computing.

https://doi.org/10.1007/s13198-017-0618-4
https://doi.org/10.1109/32.295895
https://doi.org/10.1016/0164-1212(94)90067-1
https://doi.org/10.1016/S0164-1212(96)00107-0
https://doi.org/10.1016/j.jss.2006.10.049
https://doi.org/10.1109/CSMR.2009.57
https://doi.org/10.1109/MMIT.2010.10
https://doi.org/10.1109/ICSESS.2012.6269563
https://doi.org/10.1007/978-3-642-38679-4_60
https://doi.org/10.1007/s13198-014-0227-4
https://doi.org/10.1109/ICRITO.2015.7359354
http://www.eclipse.org/aspectj

